摘要
提出了一种SA-PSO-XGBoost预测模型,基于2016年1月1日~2017年12月31日的ECMWF气象数据,用于预测南京地区6 h后的气温。将气象数据分为训练集和测试集,使用PCA降维方法对气象数据特征进行压缩降维,然后应用模拟退火和粒子群优化混合算法对XGBoost模型的超参数进行优化,并将测试集数据带入到SA-PSO-XGBoost、XGBoost、GRU和LSTM神经网络进行对比分析,实验结果表明:SA-PSO-XGBoost预测6 h后的温度模型有更高的准确性和鲁棒性。
- 单位