摘要

针对人工镜检分类白细胞准确率和效率低的问题,基于深度学习和机器学习算法,提出了一种基于迁移学习和支持向量机的白细胞分类方法。首先对迁移模型进行微调训练,其次用微调训练后的迁移模型进行特征提取,然后将特征输入至神经网络和支持向量机中进行训练,最后通过神经网络和支持向量机的组合分类器对白细胞进行分类。实验结果表明,白细胞分类准确率由最初微调训练的83.26%,随着迁移模型的优化提升为90.43%,最后通过组合分类器再次提升为93.52%,可以在临床实践中帮助医生提高诊断的准确率和效率。