摘要

目标检测是光学遥感图像解译的核心环节,广泛应用于情报侦察、土地利用、城市规划等领域。近年来,深度学习的发展成熟使光学遥感目标检测的精确度和效率得到大幅提升。本文首先综述了基于深度学习的通用目标检测算法;然后介绍了当前常用的光学遥感图像目标检测数据集并依据数据特点分析了数据集的发展趋势;接着根据遥感图像检测难点,从任意方向、多尺度、小目标、密集分布、复杂背景5个方面详细梳理了算法的优化方案;最后展望了光学遥感图像目标检测研究的发展方向。

  • 单位
    中国人民解放军陆军工程大学