摘要

当前,玻璃杯表面缺陷检测主要依赖人力劳动来完成,存在耗时长且准确率不高等问题。提出了一种将YOLOv4与MobileNetV3结合的改进算法模型YOLO-M来解决该问题。首先,利用MobileNetv3网络替换YOLOv4原本的主干网络CSPDarknet53,并修改激活函数,在减少模型大小和参数量的基础上提升运行速度。然后,对玻璃杯缺陷样本进行拍照采样,将缺陷分为磨损、气泡、划痕三种,建立玻璃杯缺陷数据集。最后利用YOLO-M、YOLOv4以及YOLOv4-tiny三种算法对玻璃杯缺陷数据集进行训练,将不同算法下的平均精度均值、帧率等评价指标进行对比。实验结果表明,YOLO-M算法在玻璃杯缺陷检测上的帧率达到57.72 f/s,平均精度均值达到91.95%,均为最高。YOLO-M算法在玻璃杯缺陷识别的速度和精度上有明显效果,可做为后续分拣研究,以及其他玻璃制品缺陷识别的重要参考。