摘要

免疫算法具有搜索效率高、避免过早收敛、群体优化、保持个体多样性等优点。将其应用于多目标优化问题,建立了一种新型的基于Pareto的多目标优化免疫算法(MOIA)。算法中,将优化问题的可行解对应抗体,优化问题的目标函数对应抗原,Pareto最优解被保存在记忆细胞集中,并利用有别于聚类的邻近排挤算法对其进行不断更新,进而获得分布均匀的Pareto最优解。文章最后,对MOIA算法与文献[3]中SPEA算法进行仿真,通过比较两者的收敛性和分布性,得到了MOIA优于SPEA的结论。