摘要
该文考虑如下初边值问题解的生命周期{ut-△u=eav,(x,t)∈Ωx(0,T),ut-△u=ebu,(x,t)∈Ωx(0,T),u(x,t)=v(x,t)=0(x,t)∈Ωx(0,T),u(x,t)=ρφ(x),v(x,t)=ρφ(x),(x,t)∈Ωx{t=0}其中a>0,b>0是常数,Ω是RN中带光滑边界Ω的有界区域,ρ>0是参数,φ(x)和φ(x)都是Ω上的非负连续函数.首先,基于一个新的常微分方程组的分析,该文构造了以上初边值问题的一个上解,并由此得到了解的生命周期的渐近下界.然后,利用比较原理和K印lan的方法[3],可以证明这个下界也是渐近上界,因此该文就得到了上述初边值问题解的生命周期的渐近表达式.