季节性ARIMA模型在河南省流感样病例发病预测中的应用

作者:杨凯朝; 杜冰会; 白祎然; 姬艳芳; 僧明华; 赵升; 史鲁斌; 李军; 张肖肖; 张延炀*
来源:河南预防医学杂志, 2023, 34(01): 23-71.
DOI:10.13515/j.cnki.hnjpm.1006-8414.2023.01.005

摘要

目的 研究河南省流感样病例(ILI)发病规律,探讨使用自回归移动平均(ARIMA)模型预测河南省流感样病例发病趋势的可行性。方法 收集2010年第1周至2022年第30周河南省流感样病例占门急诊就诊病例的比例(ILI%)数据,使用R语言进行时间序列分析并建立季节性ARIMA模型,使用最优模型对2010年14周至2021年40周ILI%数据进行拟合,对2021年第41周至2022年第30周进行预测。结果 2010-2014年河南省ILI%整体呈增高趋势,2014-2022年ILI%整体呈降低趋势。河南省ILI%变化呈现季节性,12月底至次年1月初为报告高峰。最终选择的模型是ARIMA(0,1,1)×(1,1,0)52,拟合和预测的发病趋势与实际观测到的情况基本一致,ILI%拟合误差范围在-2.93~3.51之间,平均误差-0.01,平均绝对误差0.29,均方根误差0.47,百分比误差(相对误差)在-213.95%~128.85%之间,平均绝对百分比误差11.22%;实际报告ILI%均在预测序列95%置信区间内。结论 季节性ARIMA模型可用于河南省流感样病例发病趋势的短期预测。

  • 单位
    河南省疾病预防控制中心

全文