近年来,随着公共安全需求的不断增长以及智能监控网络的快速发展,行人重识别已成为计算机视觉领域的热门研究课题之一,其目标是在不同摄像头中检索具有相同身份的行人.首先,介绍目前经典的行人重识别数据集;然后,重点梳理了近年来基于生成对抗网络的行人重识别方法,根据生成对抗网络的特点和应用场景将这些方法归纳为风格转换、数据增强和不变性特征学习3类,并总结每类方法的基本原理和优缺点;再在主流数据集上对经典算法进行比较;最后,总结现阶段行人重识别面临的挑战,并对未来的研究方向进行展望.