摘要

本文针对高分辨率遥感图像的特点,设计了一种端到端的语义分割网络结构模型,高分辨率遥感图像可得到两种图像数据,采用resnet网络对两种图像的特征分别进行提取,并在不同的特征层上进行数据融合,在网络结构的设计中引入了空间位置注意力模块和通道注意力模块,并对底层特征使用不同扩张率的空洞卷积神经网络进行多尺度融合,得到一种新的高分辨率遥感图像语义分割模型,通过对最终的预测性能分析,相比FCN、Unet、Segnet、DeeplabV3+等流行的语义分割模型,该模型在高分辨率遥感图像的预测中具有一定的优势。

  • 单位
    同济大学浙江学院; 嘉兴职业技术学院