摘要
针对深度网络对人脸噪声敏感,且学习过程容易忽视人脸结构信息的问题,提出融合子区域局部二值模式(local binary pattern,LBP)特征和深层聚合网络的人脸识别算法。将人脸图像划分为不同子区域,并采用局部二值模式对人脸进行预处理,获取子区域人脸的LBP特征。不同子区域LBP特征输入不同的稀疏自动编码器,实现深层特征提取;然后不同稀疏自动编码器的输出特征通过全连接方式实现特征聚合,获得人脸特征向量用于分类。通过大量实验获取了最优的聚合网络模型架构和网络参数取值,改善了人脸识别效果。
-
单位电子工程学院; 山东理工大学