摘要
针对滚动轴承振动信号特征提取在滤除干扰噪声的同时会将部分有用信号滤除,造成特征信号丢失的问题,提出了一种基于噪声辅助信号特征增强的滚动轴承早期故障诊断方法。采用广义多尺度排列熵筛选准则筛选振动信号,并通过粒子群优化算法优化Duffing振子系统参数,实现Duffing振子系统、输入信号与噪声间的最优匹配,从而提高随机共振效果,将部分背景噪声能量转移到滚动轴承早期微弱故障信号特征上,实现了早期微弱故障信号特征的增强。将所提方法应用于滚动轴承全寿命状态早期故障诊断,并与基于VMD的自适应形态学方法相比较,结果表明了该方法的有效性和可行性。
- 单位