基于DE-ELM算法的配电网电力系统负荷预测研究

作者:洪宇; 高骞; 杨俊义; 梁永青
来源:吉林大学学报(信息科学版), 2022, 40(06): 918-923.
DOI:10.19292/j.cnki.jdxxp.2022.06.012

摘要

针对目前方法对配电网电力系统进行负荷预测时,由于未能在电力负荷预测前对电力数据进行缺失值插补处理,导致该方法存在预测精度差、时间长以及性能差的问题,提出一种基于DE-ELM(Differential Evolution-Extreme Learning Machine)算法的配电网电力系统负荷预测研究方法。首先依据小波变换对电力数据进行去噪处理,根据去噪结果完成电力数据缺失值的插补,获取完整的电力数据集;再将数据集分成训练集与测试集两部分,将全局寻优引入极限学习机,采用DE-ELM算法对训练集进行计算,依据结果建立网络模型;最后将测试集放入构建的模型中进行训练,基于输出结果实现配电网电力系统的负荷预测。实验结果表明,运用该方法进行配电网电力系统负荷预测时,预测精度高、时长短、性能好。

  • 单位
    北京国电通网络技术有限公司