摘要
考虑分数阶Choquard型Kirchhoff临界问题微分方程解的存在性.首先,引入Hardy-Littlewood-Sobolev嵌入定理,并结合Nehari流形方法及与问题相关的能量泛函纤维映射,证明该方程在参数λ足够小时非平凡解的存在性;其次,利用Ekeland变分原理得到泛函具有(PS)序列,再选取适当的参数λ,结合截断方法和山路引理证明其紧性条件成立;最后,利用分数阶的集中紧性原理建立该方程非平凡解的存在性.
-
单位数学学院; 中北大学