摘要

针对列车驾驶员疲劳检测问题,提出一种基于人眼和嘴巴状态的驾驶员疲劳检测算法。首先采用改进的AdaBoost算法精确定位驾驶员脸部区域。然后通过模板匹配定位人眼,并根据人脸的几何特征定位嘴巴。最后计算每一帧图像的PERCLOS(per-cent eyelid closure)参数和嘴部动作频率,统计单位时间内双参数与对应阈值的关系,作为判断驾驶疲劳的依据。实验结果表明,在正常光照下,综合眼睛和嘴部信息,比采用单参数检测算法减少了误判、漏判的概率,具有较高的准确性和鲁棒性。