摘要
针对当前群组推荐研究中,对于用户偏好建模时大多忽略了群组偏好与个人偏好之间的相互影响以及建模初始化问题,提出了一种基于ranking的混合深度张量分解群组推荐算法(R-HDTF)。该算法首先利用基于深度降噪自动编码器的混合神经网络对群组、个人和项目等信息进行初始化;然后提出基于成对张量分解模型来捕获群组、个人和项目之间的相关关系;最后,采用BPR标准优化张量分解的损失函数,学习提出算法的参数。在真实数据集上的实验结果表明,该算法性能优于传统的主流群组推荐算法。
-
单位湖北大学; 中国船舶重工集团公司