基于优化AP-SVR模型的能源消耗预测

作者:张磊*; 刘驰旸; 康淑瑰
来源:山西大学学报(自然科学版), 2022, 45(04): 1004-1013.
DOI:10.13451/j.sxu.ns.2022044

摘要

针对传统SVR(Support Vector Regression)及其相关改进模型在不同时间阶段的能源消耗样本数据具有差异较大的不同函数规律或分布特征的条件下,难以进行合理预测这一问题,提出了基于优化AP(Affinity Propagation)聚类算法的AP-SVR模型。首先,在滚动预测的算法框架下建立了运用能源消耗累积规律进行预测的模型,并对AP聚类算法进行了优化;其次,结合优化AP聚类算法构建了最优化训练集,并运用SVR得到预测结果。算例分析表明,AP-SVR模型可有效识别样本训练集中能耗数据累积规律的差异,将聚类为同一类别数据作为训练集的条件下,SVR的拟合精度得到明显提升。通过多种模型计算效果的比较发现,剔除不同类型数据后的训练集明显更加适合于SVR模型的预测,在降低预测误差和改善预测结果可信度等方面优化了模型预测效果。

  • 单位
    山西大同大学

全文