摘要
针对三维点云数据分类深度学习可解释性研究,提出一种探讨点云深度学习决策的PointNet++解析网络,探索隐藏在PointNet++网络中的特征信息。根据二维图像解译工作中的类激活映射图,提出了三维点云的类激活映射图,并将点云类激活映射图作为探索PointNet++网络分类决策的依据,采用多层感知机取代全连接层,并使用均值池化层来聚合卷积特征。实验数据为ModelNet40数据集,验证了所提出的PointNet++解析网络的可行性。研究结果表明,所提算法达到了较高的分类精度并且能够对PointNet++分类决策进行探讨,提取直接有助于决策制定的特征区域。
- 单位