摘要
为了通过熔池图像对焊接状态进行判断,将卷积神经网络引入到CO2焊接熔池图像状态识别中,提出了一种CO2焊接熔池状态识别卷积神经网络CNN-M。该网络使用简单预处理的熔池图像作为输入向量,避免了人工提取图像特征的主观性对识别率的不良影响。同时,CNN-M采用了ReLU激活函数、随机Dropout及SVM分类器来降低样本集稀少可能导致的网络过拟合现象。试验结果表明,和人工提取熔池特征状态作为输入向量的BP神经网络相比,CNN-M在识别率及识别速度方面均体现出了更好的性能,其良好的泛化能力能够满足在线熔池状态监控的要求。
- 单位