自动提取人脸特征来验证人的身份目前已经被广泛的应用在各种领域,但是通过人脸特征来辨别种群大多还是停留在人工提取特征的阶段,耗费大量人力资源,或者使用深度学习,但是需要经过大量的计算消耗大量的时间。文中提出了一种利用迁移学习的方法,通过微调网络以及冻结参数相结合的训练方式提高了原预训练网络对于人脸种群识别的泛化性与稳定性;同时对模型进行了改进以提高识别的时效性,提高了网络识别速度的同时大大减少了网络的参数。经自建的人脸数据集训练测试,取得了良好的检测性能。