摘要
深度学习模型可直接建立机械设备的状态与剩余使用寿命(RUL)之间的映射关系,从而避免人工提取特征和建立健康指标的过程。文中基于深度学习理论,提出一种基于注意力机制和时序编码解码器(Encoder-decoder)相结合的RUL预测方法。首先,基于门控循环神经网络(GRU)构建一个时序编码解码器以实现输入序列的重构,其中GRU-Encoder对输入的多元时间序列进行编码;再引入注意力机制对GRU-Encoder在每个时刻的输出向量进行加权融合,以融合后的向量作为编码结果,并将其输入到GRU-Decoder中实现输入序列的重构,同时将编码结果映射为输入样本的RUL。采用CMAPSS数据集对所提方法的有效性进行验证,结果表明,该方法预测精度较高,可行且有效。
-
单位中国人民解放军陆军工程大学