摘要
基于HY-1C卫星海岸带成像仪CZI (Coastal Zone Imager)影像提取卤虫条带,对利用自主遥感数据开展生物资源监测与指导捕捞利用具有重要意义。本文以艾比湖为例,分析了HY-1C卫星CZI影像与Landsat-8卫星OLI数据的卤虫—水体端元光谱特征及差异;结合滑动窗口裁剪和光谱匹配因子SBAF (Spectral Band Adjustment Factors)模拟构建了有效样本量为837的卤虫—水体数据集;使用深度为5层的U型全卷积神经网络U-Net (U-Shaped Fully Convolutional Neural Network)算法提取卤虫条带并进行了评估与应用。与支持向量机法、最大似然分类法、归一化水体指数法相比,U-Net算法效率高、鲁棒性更好,卤虫条带的提取精确率和F1分数分别为92.02%和90.55%,比其他方法高出约11%—23%,即使面对复杂水体背景干扰,提取错误率也仅有3.3%;由2019年—2021年10景CZI影像的提取结果可知,研究期间卤虫条带的最大最小面积之比约为5.8,变化剧烈且与水体面积存在一定关联,但决定卤虫条带分布与面积的更多影响要素仍需进一步研究。未来,将建立多源、多分类、大样本量的遥感数据集,发展泛化能力更强的提取算法,实现长时序、大范围的盐湖卤虫条带时空规律分析。
-
单位武汉大学测绘遥感信息工程国家重点实验室; 国家卫星海洋应用中心