针对现有微表情识别技术未能有效利用峰值帧前后时间空间特征的缺点,文中提出基于三维卷积神经网络和峰值帧光流的微表情识别算法.首先,提取峰值帧前后相邻帧间的光流场,在保留微表情重要时间、空间信息的同时,去除冗余信息,减少计算量.然后,利用三维卷积神经网络,从光流场中提取增强的时空特征,实现微表情的分类识别.最后,通过在3个微表情数据库上的对比实验证实文中算法准确度较高.