基于自适应增强的BP模型的浙江省茶叶产量预测

作者:陈冬梅; 韩文炎; 周贤锋; 吴开华; 张竞成*
来源:茶叶科学, 2021, 41(04): 564-576.
DOI:10.13305/j.cnki.jts.2021.04.009

摘要

本文采用1999—2018年浙江省59个县市的茶叶产量数据和地面气象要素驱动数据,提出了基于产量等级因子的自适应增强的反向传播(BP)神经网络模型的茶叶产量预测机制。首先分析提取了种植面积、年平均气温、3—7月的平均相对湿度、年平均相对湿度等11个影响因子,然后构建浙江省茶叶产量预测模型。试验结果表明,基于产量等级因子的自适应增强的BP模型算法相关系数达到0.893,相对误差的平均值和方差分别为0.187和0.136。在试验数据选取方面,相较于距离预测年份较远的数据,采用临近预测年份的数据,预测精度较高。根据本研究的茶叶产量预测机制,建立了浙江省茶叶产量预测误差空间分布图,其中1级优势区的平均误差为18.32%,2级次优势区为16.73%,3级一般产区为22.69%。预测模型能够实现浙江省各县市的茶叶产量预测,对茶叶生产的宏观管理具有一定指导意义。

全文