摘要

针对时间-成本约束下的云资源调度问题,使用三角模糊数表示不确定的任务执行时间,建立了模糊云资源调度模型,调度的目标是降低任务总的执行时间和总的成本消耗,决策变量是任务和虚拟机的映射关系。使用混合粒子群优化算法(RIOPSO)对模糊云资源调度进行求解。该算法使用了正交初始化粒子群的方法,提升粒子初始探索最优调度方案的质量,在粒子搜索过程中使用重新随机化控制粒子的搜索范围,使用实时更新惯性权重的方式控制粒子在搜索中的速度,从而得到最优的调度方案。在Cloudsim仿真平台上使用随机生成的仿真数据,对提出的问题模型和优化算法进行验证,证明了模型的可靠性,实验结果表明使用提出的优化算法,可以达到使云资源调度中总执行时间和总执行成本降低的目的,并且在收敛速度、求解能力方面具有良好的性能。