摘要
针对糖尿病视网膜病变(DR)分级任务中不同种类之间差异性微小特点,提出一种基于跨层双线性池化(CHBP)的视网膜病变分级算法。首先根据霍夫圆变换(HCT)对输入图像进行裁剪,再使用预处理方法提升图像对比度;然后以挤压激励分组残差网络(SEResNeXt)作为模型的主干,引入跨层双线性池化模块进行分类;最后在训练过程中引入随机拼图生成器进行渐进训练,并采用中心损失(CL)和焦点损失(FL)方法进一步提升最终分类效果。实验结果显示,本文方法在印度糖尿病视网膜病变图像数据集(IDRiD)中二次加权卡帕系数(QWK)为90.84%,在梅西多数据集(Messidor-2)中受试者工作特征曲线下的面积(AUC)为88.54%。实验证明,本文提出的算法在糖尿病视网膜病变分级领域具有一定应用价值。
-
单位自动化学院; 江西理工大学