摘要
为改善小波网络(WNN)的非线性建模能力,提出一种基于改进无迹粒子滤波(UPF)的WNN学习算法。算法先引入最小偏度策略减少无迹变换(UT)的Sigma采样个数,改进无迹Kalman滤波(UKF);再用改进UKF算法选取粒子滤波的重要性密度函数,构成新型UPF;最后,将SUPF作为WNN的学习算法进行训练和测试。实验表明,基于新采样策略UPF与基本UPF的WNN模型精度总体接近,但速度更快,效率更高,某型军用飞机气动力建模也验证了算法的有效性与可行性。
-
单位西京学院; 北方联创通信有限公司; 空军工程大学