摘要
作为破坏性最强的海洋灾害,风暴潮灾害每年都给我国沿海地区造成了巨大的经济损失,运用科学的方法模型合理预测风暴潮灾害经济损失对指导沿海地区的防灾减灾工作意义深远。本文基于风暴潮灾害的成灾特点建立了风暴潮灾害直接经济损失预评估指标体系,由于评估指标数据高度非线性,采用核主成分分析(KPCA)对高维非线性数据进行降维优化,并利用径向基函数(RBF)神经网络对降维后的数据进行训练,从而实现对风暴潮灾害直接经济损失的预测。选取广东省1996—2018年的32个风暴潮灾害损失样本对模型进行仿真测试,结果表明,KPCA-RBF预测模型集成了核主成分分析和径向基函数神经网络的优势,预测结果精度高,学习收敛速度快,对风暴潮灾害数据序列有较好的非线性拟合能力。
- 单位