摘要
针对滚动轴承诊断中难以获得大量故障样本的问题,拟结合迁移学习的思想,提出了一种基于迁移学习的多变量预测模型(TVPMCD)方法。该方法首先采用已知样本库建立基础变量预测模型(BVPM);然后利用少量的目标域已知样本更新基础变量预测模型,使得更新的基础变量预测模型能兼顾目标域已知样本的信息;同时,以目标域已知样本的判别误差最小为目标,剔除已知样本库中误识样本,建立迁移变量预测模型(简称TVPM);最后利用迁移变量预测模型对待测样本进行识别,从而可以有效地解决小样本的故障诊断问题。对滚动轴承数据的分析结果表明,适合于小样本的TVPMCD模式识别方法可以更快更准确地识别滚动轴承故障类型。
-
单位包头轻工职业技术学院; 内蒙古工业大学