摘要
该研究通过太赫兹时域光谱采集70组含有西布曲明成分的咖啡在0~2.5 THz频段的光谱信息,建立随机森林、支持向量机、贝叶斯判别分析3种模式识别方法并进行比较研究。结果表明,未经过预处理的模型识别准确率较低。选择一阶导数、二阶导数、不同类型的巴特沃斯滤波器和Pearson特征选择融合光谱方法进行光谱信号处理。基于一阶导数处理的贝叶斯判别分析模型准确率为98.6%,基于高通巴特沃斯滤波器的随机森林模型分类准确率为94.2%,基于特征提取的融合光谱支持向量机(support vector machine, SVM)模型分类准确率为100%。选择最优预处理的SVM模型进一步对同一品牌不同地区的掺假咖啡进行鉴别,准确率为100%。研究实现了“品牌-产地”的二级特征识别,可为公安机关打击涉及咖啡的食品安全犯罪提供参考。
-
单位武汉体育学院; 中国人民公安大学