针对高分辨率遥感影像提出了一种基于神经网络的高效的机场和飞机目标检测方法,并制作了机场和飞机两类遥感影像数据集。首先对大幅遥感影像预处理,进行显著性检测和LSD(line segment detector)直线检测,通过对平行直线的筛选和聚类计算直线概率图,得到机场目标候选区域。然后,利用圆周频率滤波方法进一步提取出飞机的候选区域,最后利用深度学习模型定位飞机目标,实现了一体化的检测流程,检测准确率高达99%。