本文研究求解非线性对称正则长波(SRLW)方程的二重网格块中心有限差分方法。二重网格法可以把非线性问题转化为在粗网格上求解小规模的非线性问题,在细网格上求解大规模的线性问题,使提高计算效率。块中心差分可同时高精度计算解及其导数。对时间采用Crank-Nicolson方法进行离散。数值实验结果显示,在均匀和非均匀网格上都是二阶收敛的。二重网格法的结果与完全非线性标准块中心差分格式的数值结果相比,在精度和效率上都具有优越性。