摘要
针对儿童青少年的骨骼发育情况,临床上常采用手腕骨X射线图像进行骨龄评估。其中手骨区域的分割是预处理中的关键一步,手骨分割的准确率极大地影响最后的评估结果。传统的阈值分割方法在自动化分割过程中鲁棒性较差,利用深度神经网络的自动分割准确率比传统方法高但较为复杂。研究在阈值分割的基础上,提出先通过训练Softmax回归模型预测最佳阈值得到二值图像,再利用区域生长法提取完整手形,最后对手骨图像进行归一化处理的分割方法。在100张临床数据测试集上,将提出的方法与传统的阈值分割方法——Otsu、最大熵阈值和直方图均值分割方法进行对比,采用相似系数DSC(dice similarity coefficient)、欠分割率和过分割率3个客观评价指标对分割结果进行定量分析。实验证明该方法的分割效果最理想,平均DSC值为0.97,欠分割率和过分割率接近于0,对于复杂的手骨图像也表现出良好的分割性能,相比传统的阈值分割方法具有更好的鲁棒性,能够准确的对骨龄X射线图像进行自动化手骨分割处理。
-
单位重庆医科大学; 重庆医科大学附属儿童医院