摘要

在现实的交通环境中,由于各种因素影响,使得所采集到的交通标志图像识别的准确性不高,鲁棒性也较差,给交通标志的准确识别带来了很大的困难。为此,采用非对称卷积结构对经典卷积神经网络AlexNet进行改进,并引入批量归一化(BN)方法,提出基于优化卷积神经网络结构的交通标志识别方法。其中,非对称卷积结构使网络进一步加深,提高了识别精度。BN将每一层的输出数据归一化为均值为0、标准差为1,确保了数据稳定,使梯度传输更为顺畅。使用德国交通标志数据集进行训练并测试,结果显示改进的网络结构提升了网络的分类精度,且达到了97.56%,具有一定的应用价值。

全文