摘要
提出了一种基于经验模态分解(EMD)阈值去噪(TD)和主成分分析(PCA)相结合的冷水机组传感器故障检测方法(EMD-TD-PCA)。采用EMD阈值去噪法去除原始数据中的噪声来提高数据质量,针对去噪后的数据构建PCA模型。采集了武汉市某电子厂螺杆式冷水机组的实际运行数据,用于验证故障检测效果,并与传统PCA方法和小波阈值去噪(Wavelet-TD-PCA)方法的传感器故障检测结果进行了对比。结果表明:EMD-TD-PCA可以有效提高冷水机组传感器的故障检测效率,同等偏差条件下,故障检测效果优于传统PCA方法和Wavelet-TD-PCA方法。对于小偏差(-1~1℃)故障,故障检测效果提升尤为明显。
-
单位武汉商学院; 武汉科技大学