摘要

实际生活中存在很多动态多目标优化问题,一旦环境发生变化,就要求进化算法能快速地跟踪优化问题随时间移动的Pareto前沿或Pareto解集.对此,提出一种基于分类的多策略预测方法(CMSP).首先,利用优化得到的近似最优解来检测Pareto解集(PS)的变化类型:不变、平移和其他.然后,针对不同的变化类型,采取不同的应对策略:若为不变,则保留精英个体,并保证多样性;若为平移,则对最优解集的中心点建立时间序列,通过预测梯度策略更新种群,将预测的个体与从旧种群中保留下来的个体进行比较,以保证预测的准确性;若为其他,则对多个特殊点建立时间序列以预测新环境中个体的位置.最后,引入种群保留策略和记忆恢复策略,有利于更充分地利用历史信息.实验结果表明, CMSP可以很好地进行动态多目标优化.