摘要
由于船舶在海上运动的复杂性和非线性,精确的船舶动力定位系统数学模型难以建立。为了实现有效的动力定位控制,需要应用一定的状态估计滤波算法得到所需的船舶运动低频信号。采用常规的Kalman滤波,状态变量的新测量值对预测值的修正作用下降,旧测量值的影响随着计算步数的累积而相对提高,这是引起滤波发散的主要原因之一。文章针对船舶动力定位系统中使用常规的Kalman滤波而存在的模型不精确、不能准确表达系统噪声和测量噪声等问题,采用渐消记忆自适应滤波估算低频运动信息,在状态估计算法中引入渐消记忆因子,减小旧测量值对状态估计值的影响权重,从而增大新测量值的作用;并根据滤波发散判断准则,选择适当的渐消记忆因子值来抑制滤波器的发散,使控制器输出较为平稳,从而降低推力系统不必要的能耗。仿真实验表明,所设计的自适应滤波器的收敛性、跟踪性优于常规的Kalman滤波,有效地提高了系统的定位精度和稳定性。
-
单位上海交通大学; 建筑工程学院; 海洋工程国家重点实验室