针对传统真值发现算法无法直接应用于文本数据的问题,提出基于深度神经网络面向多源文本数据的真值发现算法(NN_Truth)。根据文本答案多因素性、词语使用多样性以及文本数据稀疏性等特点,将“数据源-答案”向量作为网络输入,识别答案真值向量作为网络输出,依据真值发现的一般假设,无监督学习各数据源答案向量间关联关系,并最终获得答案真值。实验结果表明,该算法适用于文本数据真值发现场景,较基于检索的方法及传统真值发现算法效果更优。