摘要

为了提高铅酸电池荷电状态(State of Charge,SOC)的预测准确率,本文提出一种基于K均值聚类的高斯过程回归集成算法(K-means Cluster with Ensemble Gaussian Process Regression,KC-EGPR)。首先利用K均值聚类算法对原始训练集进行聚类,生成若干个包含原始训练集的某种局部信息的子训练集;然后在每个子集上训练高斯过程回归模型(GPR);最后利用集成学习理论中的自适应提升算法(Ada Boost)对训练的多个GPR进行集成,得到最终的预测模型。在三组铅酸电池数据集上的实验结果表明,所提出的KC-EGPR算法预测铅酸电池SOC的性能优于对比模型,具有广阔的应用前景。

  • 单位
    国网山东省电力公司