摘要

为研究城市地铁沿线老旧房屋普遍存在结构安全问题,基于机器学习模型,选取房屋年份、楼层、面积等11个属性构建预警指标体系,采用SMOTE过采样、独热编码等方法解决样本离散化、不均衡的问题;利用KNN、Bayes、Logistic、SVM 4种机器学习模型对房屋结构安全数据学习并测试,综合应用Accuracy、F1、AP、AUC等指标比较预警模型性能。结果表明:以某市地铁1、2号线沿线大于20 a的2 431栋老旧房屋为例,得到Logistic和SVM的预警精度较高,影响地铁沿线老旧房屋安全现状的主要因素为房屋改造情况、基础、结构类型和设计情况,验证了模型效果。