摘要
电梯曳引轮与钢丝绳之间的滑移量过大会导致重大意外事故的发生,针对这一问题,提出了一种基于鹈鹕优化算法-卷积神经网络-堆叠回归(POA-CNN-REGST)的电梯钢丝绳滑移量预测方法。首先,使用数据产生函数生成了样本,并对样本添加了高斯白噪声,分别使用POA-CNN-REGST、支持向量机(SVM)、相关向量机(RVM)对仿真数据进行了训练和学习;然后,对试验基地采集的电梯滑移量等相关数据进行了归一化处理,并用POA-CNN-REGST进行了电梯钢丝绳滑移量预测;最后,将结果与传统的统计学模型SVM和RVM进行了比较。研究结果表明:在使用相同的训练集和测试集时,在仿真数据分析中,其均方根误差为0.049 6;在真实数据分析中,其均方根误差和平均绝对百分比误差低至0.066 1和0.073 3。无论是仿真数据或是真实数据分析,该模型预测准确度都远高于SVM和RVM,这表明其在电梯钢丝绳滑移量预测方面具有高度可靠性。
- 单位