摘要

在电子鼻系统中,特征提取和选择以及分类模型都是其性能改进的关键。针对从传感器阵列中提取单一特征时会忽略传感器特异性的问题,提出基于相关性分析来选择每一个传感器最优的特征提取方法,组成最优特征向量进行气体识别,实验表明:通过该方式提取的特征向量在分类模型中表现更好,在各模型的平均识别准确率提升了0.027,其中支持向量机和人工神经网络提升效果最明显,分别提升了0.031和0.054。并根据模型特性和实际需求,提出逻辑回归与支持向量机结合的二次分类模型,实验表明该模型能够进一步提高分类准确率,降低具体气体检测场景中辨别气体错误的风险。