摘要

针对多聚焦图像融合易出现块效应和边界伪影等问题,提出了一种综合迭代引导滤波和字典学习超像素聚类的融合算法。首先对源图像进行超像素分割,利用密度峰值实现超像素的聚类,以超像素聚类块为处理单元提取特性形成特征矩阵;建立低秩表示模型,引入拉普拉斯正则项增加同类相邻区域空间一致性约束;构造低秩表示字典,借助自带二次惩罚项的线性交替迭代求解模型系数;通过联合低秩表示系数矩阵和误差矩阵构建初步聚焦特征图,利用迭代引导滤波优化聚焦特征图扩大多焦差异化,最后基于优化聚焦特征图和源图像获得最终融合结果。经仿真对比可知,提出算法的融合结果无论在主观视觉还是客观指标上都优于其他同类算法。