摘要
滨海盐碱区土壤盐分的快速、准确监测对土地合理利用和保护具有重要意义。可见光近红外(Vis-NIR)光谱技术已广泛用于土壤属性的高效估测。然而,水分对含盐土壤光谱的干扰导致传统土壤盐分估测模型的精度降低。旨在探究分段直接标准化(PDS)和正交信号校正(OSC)在含水条件下土壤盐分估测中的应用,从而建立面向滨海盐碱区的"除水"Vis-NIR定量模型。为此,将获取的144份黄河三角洲滨海盐碱区表层(0~20 cm)土壤盐分数据划分为建模集(17个样本)和验证集(127个样本)。通过严格加水控制实验,测量10个含水率梯度(0%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%和50%)的建模集土壤光谱数据,验证集的土壤光谱则是根据生成的1~50随机整数,通过随机加水实验测量获取。采用PDS和OSC与偏最小二乘回归(PLSR)结合的建模策略,构建土壤盐分估测模型,并进行性能验证和比较。结果表明,OSC比PDS更能有效减轻水分在土壤盐分估测中的建模干扰。具体来说,光谱校正前后生成的所有PLSR模型均取得一定的成功(R■=0.79~0.91, RMSEP=2.6~3.98 g·kg-1, RPD=1.98~2.37)。OSC-PLSR模型的土壤盐分估测精度提高,R■, RMSEP和RPD分别为0.91和2.6 g·kg-1和2.37。而PDS-PLSR模型效果不理想,R■, RMSEP和RPD分别为0.79, 3.98 g·kg-1和1.98。模型整体表现出了OSC-PLSR>PLSR>PDS-PLSR的土壤盐分估测性能。此外,提出了变量投影重要性(VIP)和Spearman相关系数(r)结合的分析策略,进一步探究了模型的估测机理。模型的重要波长(VIP>1)与土壤盐分敏感波长(|r|>0.4)吻合,对估测模型有重要意义。比较而言,OSC-PLSR精确提炼了位于830, 1 940和2 050 nm附近的模型估测的关键波长,而常规的PLSR和PDS-PLSR包含了大量的冗余信息。综合来看,OSC-PLSR模型在Vis-NIR土壤盐分估测中具有较好的除水效果,为土壤含水状态下的土壤盐分研究提供可靠方法。
- 单位