摘要
本文采用卷积神经网络的机器学习方法进行了μ子成像的材料识别,通过迭代训练数据获得最优模型并测试样品在不同测量时间下的识别准确度。在中国原子能科学研究院的μ子散射成像装置上开展了不同材料的测试实验,根据实验测量数据进行径迹重建并计算μ子的入射和散射角,构建基于卷积神经网络结构的材料识别模型进行特征提取,实现对材料的分类识别,并进一步引入残差和特征矩阵提高了材料的识别准确度。实验结果表明,对于10 cm×10 cm×10 cm的钨块,材料识别准确度在测量5 min时达到99.1%,在测量10 min时达到100.0%。这种基于卷积神经网络的方法为μ子散射成像材料识别提供了一种新途径。
- 单位