摘要
关系抽取旨在从句子中识别出实体对之间的关系类型。在关系抽取领域,目前主流的方法都使用了深度学习方法,但大部分方法在输入层没有对词向量进行深层次的讨论。针对这一不足,提出了一种基于多维语义映射的关系抽取方法,该方法的核心思想是将矩阵降维方法应用于神经网络模型输入层。通过将表示文本的词向量进行多维度的降维分解,使分解后的词向量能映射表示同一语句在不同维度上的语义信息。实验结果表明,在Chinese Literature Text和SemEval-2010 Task8数据集上F1值分别达到了75.3%和88.9%,验证了所提方法的有效性。
- 单位