摘要

如何使用图像底层特征有效表达高层语义是实现图像自动分类难以逾越的鸿沟。本文将模糊粗糙集理论引入图像自动分类,在使用图像底层特征表达高层语义的图像自动分类过程中,把高维特征向量处理、合适的描述符集合选择难题转换为模糊决策表,使用图像语义贴近度概念来检验图像特征属性间的数据依赖关系,以达到属性约简,剔除冗余信息和图像分类规则推导的目的,并定义了图像类别隶属度函数对图像进行分类。实验结果表明该图像分类系统的分类正确率达81.7%,说明该方法具有很好的精确性和有效性,能较好地实现图像自动分类。

全文