摘要

针对水文参数时间序列的预测问题,在多尺度影响因素分析的基础上,提出了一种新的基于多周期重构的预测方法。首先利用小波变换和滑动平均计算对原始时间序列进行若干周期的分解;对分解序列分别进行自回归积分滑动平均(Autoregressive Integrated Moving Average,ARIMA)建模,由模型进行递推预测;再将预测结果反向重构实现对原始序列未来值的预测。运用此方法,对烟台海区某海洋浮标站的温度测量数据进行了分析。分析结果表明,此方法相比直接在原始序列上进行ARIMA建模与预测,预测准确度得到提升,可用于对试验海区水文参数序列的处理,为试验决策提供支撑。

  • 单位
    中国人民解放军63850部队