摘要
软大间隔聚类(Soft Large Margin Clustering)已被证明比其他诸如K-Means等诸多聚类算法具有更优的聚类性能与可解释性。然而作为单机聚类算法,仍有可扩展性的瓶颈,因此有人将其进行分布式改造。然而在进行分布式运算时,在迭代过程中存在节点之间相互通信的过程。如果某些节点存在隐私数据,那么数据集中的敏感信息在通信过程中就可能泄漏。为此,本文将分布式软大间隔聚类算法(Distributed Sparse SLMC)结合隐私保护,通过插入高斯噪声来提供零集中差分隐私(Zero Concentrated Differential Privacy),发展出差分隐私软大间隔聚类算法。最后通过理论证明其隐私保护效用,通过实验验证其具有与非联邦算法相近的收敛速度与聚类性能。
- 单位