摘要
针对传统的模糊评价系统存在评价冲突和主观偏差,造成网络安全态势预测出现精度和鲁棒性较低等问题,提出一种结合Dempster-Shafer(D-S)证据理论与循环神经网络的网络安全态势预测算法;首先以专家评价为基础构建网络安全的系统角色,由三角模糊函数获取专家评估指标;然后引入D-S证据理论进行评估指标的筛选、推理和校正,构建网络安全态势损失矩阵和可能性矩阵;最后,以损失矩阵和可能性矩阵为特征输入至循环神经网络中,获取网络安全态势预测结果。仿真实验结果表明,D-S证据理论有效地解决了评价冲突和主观偏差问题,循环神经网络使得网络安全态势预测结果的精度和鲁棒性都得到了提升。
- 单位