摘要

针对车辆辅助驾驶系统中遇到的障碍物小的特点和对实时性的高要求,提出一种基于卷积神经网络YOLO图像检测算法优化并增加分类计数的方法。通过对小石子和道路坑洞这2种极易引发车辆事故的典型小型障碍物图像建立数据库,针对数据库利用k-Means+优化k值并配置新的锚定值,对取自车载视频的图像进行检测识别。新增的分类和计数算法可快速、直观地获得检测结果,实现驾驶员快速决策的目标。实验结果表明,该方法可对小石子和道路坑洞等小型障碍物有效地检测识别和分类计数,检测速度也满足系统的实时性要求。

  • 单位
    福建工程学院